THE MATERIALS TESTING CENTER (MTC) # SCHEDULE OF CHARGES FOR TESTING AND SERVICES AND QUANTITIES OF MATERIAL REQUIRED FOR TESTING #### **July 2008** #### **TABLE OF CONTENTS** | | Pag | |--|-----| | PREFACE | ii | | PART A - TESTS OF SOILS | | | Costs of Individual Tests and Analyses | 2 | | Quantities of Materials Required for Selected Testing | | | PART B - TESTS OF AGGREGATE, RIPRAP STONE, AND ROCK | | | Costs of Individual Tests and Analyses | | | Quantities of Materials Required for Testing | 13 | | PART C - TESTS OF CEMENTITIOUS MATERIALS AND ADMIXTURES | | | Costs of Individual Tests and Analyses | | | Quantities of Materials Required for Testing | 22 | | PART D – TESTS OF CONCRETE AND SPECIAL SERVICES | | | Cost Estimates of Tests and Analyses. | 24 | | Quantities of Materials Required for Testing. | 27 | | PART E – TESTS OF MISCELLANEOUS MATERIALS, WATER, SOIL-CEMENT, BRICKS, | | | MASONRY UNITS, AND OTHER MATERIALS | | | Cost Estimates of Individual tests and Analyses. | | | Quantities of Materials Required for Testing. | 38 | | PART F - TESTS OF WATERSTOPS AND GATE SEALS, JOINT SEALERS, JOINT | | | FILLERS, AND CAULKING AND SEALING MATERIALS | | | Costs of Individual Tests and Analyses | | | Quantities of Materials Required for Testing | 47 | | PART G - TEST OF ASPHALT, ASPHALT MATERIALS, AND GEOTEXTILES | | | Costs of Individual Tests and Analyses | 50 | | Quantities of Materials Required for Testing | 53 | ## SCHEDULE OF CHARGES FOR TESTING AND SERVICES AND QUANTITIES OF MATERIAL REQUIRED FOR TESTING #### **PREFACE** The Materials Testing Center (MTC), US Army Engineer Research and Development Center (ERDC), Vicksburg, MS, provides material testing and laboratory inspection services for US Army Corps of Engineers (USACE) Divisions, Districts, other field offices and contract laboratories. The mailing address for these services is: Commander and Director Engineering and Research Development Center ATTN: CEERD-GS-E 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Technical services such as testing and evaluation of materials are provided to support design and construction of Military and Civil Works projects, procurement services for USACE activities, and technical requirements of other government agencies. Technical supervision for testing performed at project laboratories is also available as directed in Engineer Regulation (ER) 1110-1-8100. <u>Estimated</u> charges for routine testing services listed in this schedule include direct costs of labor and materials, normal indirect charges, and costs of final reporting and preparation of reports and drawings as required. The minimum charge for a testing project is \$500. Charges for tests of a specialized nature or for services that are not routine are shown as "Cost" in the schedule. For some, a minimum cost or a range of costs is given. For test assignments having estimated costs of \$3,000 or less, add ten (10) percent to cover additional pro rata costs of sample receiving, sample handling, and data reporting. Estimates of these charges for specific projects or investigations will be furnished upon request. Charges are based on total direct and indirect costs in accordance with ER 1110-1-8100. All samples or specimens submitted for testing must be identified and labeled clearly so that they require only normal processing. Requests for tests should be submitted to the MTC on DD Form 448 or DA Form 2544. The original and three copies should be furnished. Acceptance copies of the completed forms will be signed and returned to the requesting agency. Completed forms should include: (a) specific tests requested, (b) project name and location, (c) contract or specification number, (d) type and source of materials, (e) other pertinent identifying information. All USACE offices are invited to call for assistance in solving their design and construction problems in the fields of geology, petrography, soils, rock, concrete and concrete materials, water analysis, asphalt, paving materials, and acceptance testing of most engineering materials. Capabilities available in the MTC vary from routine (conventional) testing to specialized investigations. References for test methods shown are: - 1) American Society for Testing and Materials (ASTM) Annual Book of Standards (Section 4-Construction, Volumes 04.01-04.05, and 04.07-04.09). - 2) Engineer Manual (EM) 1110-2-1906, Engineering and Design, Laboratory Soils Testing - 3) Engineer Manual (EM) 1110-2-2000, Engineering and Design, Standard Practice for Concrete for Civil Works Structures - 4) Engineer Manual (EM) 1110-2-2002, Engineering and Design, Evaluation and Repair of Concrete Structures - 5) Engineer Manual (EM) 1110-2-2006, Engineering and Design, Roller Compacted Concrete - 6) Engineer Regulation (ER) 1110-1-2002, Engineering and Design, Cement, Slag, and Pozzolan Acceptance Testing - 7) Technical Memorandum (TM) No. 3-357, The Unified Soil Classification System - 8) Technical Report (TR) No. GL-86-13, The Large Strain, Controlled Rate of Strain (LSCRS) Device for Consolidation Testing of Soft Fine-Grained Soils - 9) U.S. Army Corps of Engineers Handbook of Concrete and Cement (CRD-C), available at http://www.wes.armv.mil/SL/MTC/handbook/handbook.htm - 10) U.S. Army Corps of Engineers Rock Testing Handbook (RTH), available at http://www.wes.army.mil/SL/MTC/handbook/RT/RockTestingHandbook.htm The MTC assists Divisions and Districts by performing laboratory inspections for Quality Assurance (QA) and Quality Control (QC) laboratories. The typical cost for a full on-site laboratory inspection varies from approximately \$5,500 to \$10,500 depending on travel requirements and the scope of the inspection services. In addition, there are two types of audits, full and abbreviated, that can be performed if the laboratory has been inspected/accredited by AMRL and/or CCRL. A full audit can be performed for a cost of \$3,500 if the laboratory has been inspected by AMRL and/or CCRL but is not accredited by AASHTO. An abbreviated audit can be performed for \$2,000 if the laboratory has a current accreditation from AASHTO. The Handbook for Concrete and Cement, ASTM Annual Book of Standards, and other publications recommend other tests not specifically listed here. The MTC is staffed and equipped to perform many of these additional tests. Check with us rather than neglect testing that should and could be done. This schedule gives (a) tests costs and (b) quantities of material required for testing. # PART A **TESTS OF SOILS** #### **TESTS OF SOILS** #### Costs of Individual Tests and Analyses (July 2008) | Test | Description | Cost, \$ | |--|--|------------------------------| | | Sample receiving and disposal fee (per undisturbed or bag sample) | 55 | | ASTM D 2488
TM 3-357 | Visual classification and water content (jar or bag) | 45 | | ASTM D 2488
TM 3-357 | Visual classification, description of stratification, pocket penetrometer readings, and sketch (record sample) | 219 | | ASTM D 2974 | Organic content (loss on ignition) | 66 | | ASTM D 422
EM 1110-2-1906
Appendix V
ASTM D 1140 | Sieve analysis (includes soil classification): Percent fines (wash over #200) Sand (#4 to #200; sample is routinely washed) Gravel (plus #4; sample is routinely washed) Clay gravel (requiring washing) Sand fraction, as part of combined analysis | 39
83
110
264
66 | | ASTM D 422
EM 1110-2-1906
Appendix V | Hydrometer analysis (includes soil classification) oven-dried before test wet method | 77
94 | | ASTM D 4318
EM 1110-2-1906
Appendix III | Liquid and plastic limits (Atterberg, includes soil classification) 1-point method (washed through #40 sieve) 4-point method (washed through #40 sieve) If clay gravel requiring extensive washing | 132
193
303 | | ASTM D 4644 | Slake durability (clay shales) | 303 | | ASTM D 854
EM 1110-2-1906
Appendix IV | Specific gravity: Absolute (clay or sand) Apparent or bulk (gravel) | 77
99 | | ASTM D 4647
EM 1110-2-1906
Appendix XIII | Pinhole erosion (to identify dispersive clays): Undisturbed sample Compacted sample | 385
440 | | ASTM D 698
ASTM D 1557
ASTM D 1883
ASTM D 4253
ASTM D 4254 | Density Determinations: Compaction (moisture-density, 5-point curve): 4-indiam mold 6-indiam mold with California Bearing Ratio (CBR), 6-indiam mold | 715
798
1,100 | | EM 1110-2-1906
Appendix VI
EM 1110-2-1906
Appendix XII | Maximum/minimum (using vibratory table): Sands Gravels | 385
418 | | Test | Description | Cost, \$ | |---|---|---------------------------------| | ASTM D 2216
EM 1110-2-1906
Appendix I | Water content (per jar or bag) | 28 | | ASTM D 2937
EM 1110-2-1906
Appendix II | Density and water content plus visual classification: Undisturbed sample, direct measurement Undisturbed sample, displacement method Density and water content only | 154
193
88 | | ASTM D 2937
EM 1110-2-1906
Appendix II | Incremental density on sand, (3-indiam Shelby tube per increment) | 66 | | ASTM D 5084
EM 1110-2-1906
Appendix VII | Hydraulic Conductivity (Permeability): In triaxial compression chamber using back-pressure saturation | 880 | | ASTM D 2435
EM 1110-2-1906
Appendix VIII |
Consolidation to 16 tons/sq ft (7 loads) plus rebound (3); add \$ 25 for each additional load (maximum of 64 tons/sq ft on 4.25-indiam specimen and 185 tons/sq ft on 2.5-indiam specimen): Undisturbed specimen Compacted specimen | 770
880 | | TR # GL-86-13 | Consolidation (self weight for dredge materials) | 1,650 | | ASTM D 4546
EM 1110-2-1906
Appendix VIIIA | Swell pressure | 440 | | ASTM D 4546
EM 1110-2-1906
Appendix VIIIA | Free swell | 440 | | ASTM D 3080
EM 1110-2-1906
Appendix IX | Direct shear, S (consolidated, drained, controlled strain, 3-insq specimen, max σ_n = 8 tons/sq ft, 3 specimens, 0.5 in. displacement in 48 hours): Undisturbed Compacted | 880
1,018 | | EM 1110-2-1906
Appendix IXA | Repeated S direct shear (consolidated, drained, 3-insq specimen, max σ_n = 8 tons/sq ft, precut shear plane) | 963 | | ASTM D 2166
EM 1110-2-1906
Appendix XI | Unconfined triaxial compression: 1.4-indiam (undisturbed specimens) 1.4-indiam (remolded specimens) larger than 1.4-indiam (undisturbed specimens) larger than 1.4-in. diam (remolded specimens) larger than 1.4-indiam (Hydrostone capped) | 165
209
352
495
385 | | Test | Description | Cost, \$ | |---|--|------------| | ASTM D 2850
EM 1110-2-1906
Appendix X | Triaxial compression (shear): Q (undisturbed, unconsolidated, undrained): 3 specimens, 1.4-indiam 1 specimen, larger than 1.4-indiam | 715
440 | | ASTM D 2850
EM 1110-2-1906
Appendix X | Q (compacted, unconsolidated, undrained): 3 specimens, 1.4-indiam | 825 | | ASTM D 4767
EM 1110-2-1906
Appendix X | R-bar (undisturbed, consolidated, undrained, saturation by back pressure, pore pressures measured during shear): 3 specimens, 1.4-indiam | 1,100 | | ASTM D 4767
EM 1110-2-1906
Appendix X | R-bar (compacted, consolidated, undrained, saturation by back pressure, pore pressures measured during shear): 3 specimens, 1.4-indiam | 1,265 | | ASTM D 4648 | Vane shear (strength, visual classification, water content) | 88 | #### **Large Scale Tests** Triaxial tests (monotonic and cyclic, including dynamic properties, falling head permeability, isotropic or Kc consolidation, etc.) 2.8, 4.0, 5.0, 6.0, 9.0, 12.0, and 15.0" dia Cost* 1-D consolidation (12" dia) Cost* Permeability (constant head) 11, 18, 36" dia vertical 4' x 4' x 6' horizontal Cost* Compaction 6", 12", 18" dia Cost* Direct/Interface Shear 2' x 2' x 1' Cost* Resonant Column 1.4", 2.8", 4.0" dia Cost* Stress Chamber (Soil Structure Interaction Studies) 5' dia x 6' high Cost* Material requirements => 100 lb to several tons (depending on specific test requirements and material) Time requirements per specimens => several days to several weeks (depending on specific test requirements and material) ^{*} Estimated costs per specimen => \$200 to \$10,000 or more (depending on specific test requirements and material) | Test | Description | Quantity Required | |----------------------------|--|---| | | <u>Soils</u> | | | ASTM D 2216 | Water content (per jar or bag) maximum particle size, #4 sieve maximum particle size, 3/8-in. sieve maximum particle size, 3/4-in. sieve | 0.1 kg (0.2 lb)
0.5 kg (1.1 lb)
2.5 kg (5.5 lb) | | ASTM D 2488 | Visual classification maximum particle size, #4 sieve maximum particle size, 3/8-in. sieve maximum particle size, 3/4-in. sieve | 0.1 kg (0.2 lb)
0.2 kg (0.4 lb)
1.0 kg (2.2 lb) | | ASTM D 422 | Sieve / Hydrometer analysis
maximum particle size, #4 sieve
maximum particle size, 3/8-in. sieve
maximum particle size, 3/4-in. sieve | 0.1kg (0.2 lb)
0.6 kg (1.3 lb)
1.1 kg (2.4 lb) | | ASTM D 4318 | Liquid and plastic limits (Atterberg) | 0.2 kg (0.4 lb) | | ASTM D 854 | Specific gravity maximum particle size, #10 sieve maximum particle size, #4 sieve | 0.02 kg (0.04 lb)
0.1 kg (0.2 lb) | | ASTM D 698
ASTM D 1557 | Compaction (4 in. mold) Compaction (6 in. mold) | 22.7 kg (50.0 lb)
45.4 kg (100.0 lb) | | ASTM D 4253
ASTM D 4254 | Maximum/minimum density maximum particle size, 3/4-in. sieve maximum particle size, 1-1/2-in. sieve | 11.0 kg (24.3 lb)
34.0 kg (75.0 lb) | | ASTM D 2850 | Triaxial compression (Q, R-bar) 1.4 india (3 specimens) 2.8 india (3 specimens) | 1.0 kg (2.2 lb)
4.0 kg (8.8 lb) | | ASTM D 5084 | Hydraulic conductivity (permeability) 1.4 india 2.8 india | 0.4 kg (0.9 lb)
1.6 kg (3.6 lb) | | ASTM D 2435 | Consolidation Fixed ring (4.4-in. dia) Self weight (dredge materials) | 0.6 kg (1.3 lb)
7.0 kg (15.4 lb) | | ASTM D 3080 | Direct shear (3 specimens, 3-in. sq.) | 1.0 kg (2.2 lb) | ## **PART B** # TESTS OF AGGREGATE, RIPRAP STONE, AND ROCK #### TESTS OF AGGREGATE, RIPRAP STONE, AND ROCK #### **Costs of Individual Tests and Analyses** | Test | Description | Cost, \$ | |------------|---|-----------------------| | | <u>Aggregates</u> | | | ASTM C 29 | Unit Weight of Aggregate a. Fine aggregate b. Coarse aggregate | 110
215 | | ASTM C 40 | Organic Impurities in Fine Aggregate | 110 | | ASTM C 87 | Effect of Organic Impurities in Fine Aggregate on Strength of Mortar | 1,645 | | ASTM C 88 | Soundness of Aggregate in Magnesium or Sodium Sulfate (Fine or Coarse) | 539 | | ASTM C 117 | Material Finer than 75-μm (No. 200) Sieve
a. Fine aggregate
b. Coarse aggregate: 37.5-mm (1-1/2-in.)
c. Coarse aggregate: 75-mm (3-in.) and larger | 110
215
429 | | ASTM C 123 | Percent of Lightweight Pieces in Aggregate a. Fine aggregate b. Coarse aggregate | 429
539 | | ASTM C 127 | Specific Gravity and Absorption of Coarse Aggregate | 325 | | ASTM C 128 | Specific Gravity and Absorption of Fine Aggregate | 429 | | ASTM C 131 | Los Angeles Abrasion Resistance of Small-Size Coarse Aggregate | 539 | | ASTM C 136 | Sieve Analysis a. Fine aggregate b. Coarse aggregate: 37.5-mm (1-1/2-in.) c. Coarse aggregate: 75-mm (3-in.) | 215
325
858 | | ASTM C 142 | Clay Lumps and Friable Particles in Aggregate | 325 | | ASTM C 227 | Alkali-Reactivity (Mortar Bar Method) | 1,716 | | ASTM C 289 | Alkali-Silica Reactivity (Chemical Method) | 1,716 | | ASTM C 295 | Petrographic Examination a. Fine aggregate, per sample b. Coarse aggregate, per sample c. Ledge rock as aggregate, per rock type | 1,716
3,432
858 | | Test | Description | Cost, \$ | |----------------------------|--|-------------------------| | | Aggregates (Contd.) | | | ASTM C 342 | Volume Changes in Cement-Aggregate Combination | 1,716 | | ASTM C 535 | Los Angeles Abrasion Resistance of Large-Size Coarse Aggregate | 644 | | ASTM C 586 | Alkali-Carbonate Reactivity (Rock Cylinder Method) | 539 | | ASTM C 1105
ASTM C 1260 | Alkali-Carbonate Reactivity (Concrete Prism Method) Alkali-Silica Reactivity (Mortar-Bar Method) | 2,150 | | | a. Fine Aggregateb. Coarse Aggregate | 1,716
2,150 | | ASTM C 1293 | Alkali-Silica Reactivity (Concrete Prism Method) | 2,150 | | ASTM C 1567 | Alkali-Silica Reactivity (Mortar-Bar Method) a. Fine Aggregate b. Coarse Aggregate | 1,716
2,150 | | ASTM D 75 | Field Sampling of Aggregates | Cost | | ASTM D 4791 | Flat and Elongated Particles (Coarse aggregate) | 539 | | CRD-C 114 | Freezing and Thawing of Aggregate in Concrete a. Casting b. Testing | 7,937
3,432
4,505 | | CRD-C 120 | Flat and Elongated Particles (Fine aggregate) | 754 | | CRD-C 125
CRD-C 126 | Coefficient of Linear Thermal Expansion a. Coarse aggregate b. Fine aggregate in mortar | 5,148
2,255 | | CRD C 130 | Soft Particles in Coarse Aggregate (Scratch Hardness) | 429 | | | Sample Preparation (crushing, screening, drying) | Cost | | | Fractured Faces (five sieve fractions) | 325 | | Test | Description | Cost, \$ | |-------------|---|----------------| | 1031 | Riprap Stone | Ουσι, ψ | | ASTM C 88 | Sulfate Soundness | 644 | | ASTM C 127 | Specific Gravity and Absorption | 429 | | ASTM C 295 | Petrographic Examination, per sample | 858 | | ASTM C 535 | Los Angeles Abrasion Resistance Test | 644 | | ASTM D 5312 | Resistance of Stone to Freezing and Thawing (up to 55 cycles) | 2,684 | | ASTM D 5313 | Resistance of Stone to Wetting and Drying (up to 80 cycles) | | | CRD-C 144 | Resistance of Stone to Freezing and Thawing (20 cycles) | 3,218
2,150 | | CRD-C 148 | Expansive Breakdown on Soaking in Ethylene Glycol | 638 | | CRD-C 169 | Resistance to Wetting and Drying (30 cycles) | 2,150 | | Test | Description | Cost, \$ | |--------------------------|--|--------------------------------| | | Rock | | | ASTM C 295
RTH 102 | Petrographic Examination Rock Type and Physical Condition, per type Rock Mechanics Investigations, per sample X-Ray Thin Section | 1,073
1,073
Cost
Cost | | ASTM D 2845 | Pulse Velocity and Ultrasonic Elastic Constants | 325 | | CRD-C 90 | Direct Shear, Intact Rock up to 6-in. dia (three tests) | 2,150 | | EM 1110-2-1906
App IX | Direct Shear, Intact Shale or Friable Rock, 3-in. x 3 in. (three tests) | 2,150 | | EM 1110-2-1906
App IX | Direct Shear, Sawed and Jointed Surfaces for Sliding Friction 3-in. x 3-in. or up to 6-in. dia (three tests) See Note R2 | 2,150 | | EM 1110-2-1906
App IX | Direct Shear, Concrete-to-Rock Interface 3-in. x 3-in. or up to 6-in. dia (three tests)
See Notes R2, R3 | 2,150 | | RTH 106 | Water Content | 325 | | RTH 107 | Specific Gravity, Absorption, and Moisture Content | 429 | | RTH 108 | Specific Gravity of Solids (Grain Density) | 539 | | RTH 109 | Effective and Dry Unit Weights and Total Porosity | 429 | | RTH 203 | Direct Shear, Intact or Jointed Specimens up to 6-in. dia (three tests to determine angle of internal friction and cohesion) | 2,150 | | _ | Porosity and Solids by High Pressure | 644 | | _ | Logging Core, initial foot
Each additional foot | 215
57 | | _ | Sample Receiving and Disposal, per box or block | 56 | | _ | Specimen Photographs for Tests where not SOP | 16 | | Test | Description | Cost, \$ | |-----------------------------------|---|-------------------------------------| | | Rock (Cont'd) | | | ASTM D 4543,
RTH 103 | Rock coring for test preparation, per cored test specimen | 56 | | | Adsorption, per test sample | 157 | | ASTM D 2938,
RTH 111-89 | Unconfined (Uniaxial Static) Compressive Strength, per test, See Notes R1, R2 | 322 | | ASTM D 4138,
RTH 201-89 | Modulus of Elasticity (Static) in Uniaxial Compression, per test, See Notes R1, R2 | 535 w/o strength,
699 w/strength | | ASTM D 4138,
RTH 201-89 | Modulus of Elasticity (Static) in Uniaxial
Compression with Poisson's ratio, per test,
See Notes R1, R2 | 642 w/o strength,
803 w/strength | | ASTM D 5731,
RTH 325-89 | Point Load Index, per test sample, both parallel and crossbed tests as possible | 79 | | ASTM D 2936,
RTH 112-93 | Tensile Strength, Direct Method, per test,
See Note R1 | 965 | | ASTM D 3967, C 496,
RTH 113-93 | Tensile Strength, Splitting (Brazilian) Method, per test, See Notes R1, R2 | 171 | | | Preparation and Compressive Strength Testing of cementitious concrete or grout for bond testing, per mix specification | 394 | | ASTM D 4435,
RTH 323-80 | Rock Bolt Anchor Pull Test, per test, special anchorages (not cementitious grout) used as provided or at cost, See Notes R2, R3 | 550 | | ASTM D 4644 | Slake Durability, per test sample, See Note R2 | 265 | | - | Miscellaneous In Situ Geohydrology and Rock
Mechanics Tests | cost | | Test | Description | Quantity Required | |------------|---|---| | | <u>Aggregates</u> | | | ASTM C 29 | Unit Weight a. 12.5 mm (☐ in.) b. 25.0 mm (1 in.) c. 37.5 mm (1-1/2 in.) d. 75 mm (3 in.) e. 150 mm (6 in.) | 15 kg (35 lb)
50 kg (110 lb)
75 kg (165 lb)
175 kg (385 lb)
250 kg (550 lb) | | ASTM C 33 | Multiple Tests for Material Compliance a. Fine aggregate b. Coarse 19.0-mm (3/4-in.) Nominal Maximum Size of Aggregate (NMSA) c. Coarse 37.5-mm (1-1/2-in.) NMSA d. Coarse 450-mm (3-in.) NMSA | 20-kg (44-lb)
35-kg (77-lb)
85-kg (188-lb)
175-kg (388-lb) | | ASTM C 40 | e. Coarse 150-mm (6-in.) NMSA Organic Impurities in Fine Aggregate | 300-kg (660-lb)
10 kg (25 lb) | | ASTM C 87 | Effect of Organic Impurities in Fine Aggregate on the Strength of Mortar | 10 kg (25 lb) | | ASTM C 88 | Sulfate Soundness a. Fine aggregate b. Coarse aggregate, 19.0 mm (3/4 in.) NMSA c. Coarse aggregate, 37.5 mm (1-1/2 in.) NMSA d. Coarse aggregate, 63 mm (2-1/2 in.) NMSA e. Coarse aggregate, 90 mm (3-1/2 in.) NMSA | 10 kg (25 lb)
25 kg (55 lb)
75 kg (165 lb)
125 kg (275 lb)
175 kg (385 lb) | | ASTM C 117 | Material Finer Than 75-μm (No. 200) Sieve
a. 2.36 mm (No. 8)
b. 4.75 mm (No. 4)
c. 9.5 mm (3/8 in.)
d. 19.0 mm (3/4 in.)
e. 37.5 mm (1-1/2 in.) | 10 kg (25 lb)
10 kg (25 lb)
10 kg (25 lb)
25 kg (55 lb)
75 kg (165 lb) | | ASTM C 123 | Lightweight Pieces a. Fine aggregate b. Coarse aggregate, 9.5 mm (3/8 in.) NMSA c. Coarse aggregate, 19.0 mm (3/4 in.) NMSA d. Coarse aggregate, 37.5 mm (1-1/2 in.) NMSA e. Coarse aggregate, 75 mm (3-in.) NMSA | 10 kg (25 lb)
10 kg (25 lb)
25 kg (55 lb)
75 kg (165 lb)
150 kg (330 lb) | | ASTM C 127 | Specific Gravity and Absorption of Coarse
Aggregate
a. Coarse aggregate, 75 mm (3-in.) NMSA
b. Coarse aggregate, 150 mm (6-in.) NMSA | 150 kg (330 lb)
250 kg (550 lb) | | ASTM C 128 | Specific Gravity and Absorption of Fine Aggregate | 10 kg (25 lb) | | ASTM C 131 | Los Angeles Abrasion Resistance of Small-Size Coarse Aggregate | 75 kg (165 lb) | | Test | Description | Quantity Required | |------------|--|--| | | Aggregates (Contd.) | | | ASTM C 136 | Sieve Analysis a. Fine b. Coarse 19.0 mm (3/4 in.) NMSA c. Coarse 37.5 mm (1-1/2 in.) NMSA d. Coarse 75 mm (3 in.) NMSA e. Coarse 150 mm (6 in.) NMSA | 10 kg (25 lb)
25 kg (55 lb)
75 kg (165 lb)
150 kg (330 lb)
250 kg (550 lb) | | ASTM C 142 | Clay Lumps and Friable Particles a. 19.0 mm (3/4 in.) b. 37.5 mm (1-1/2 in.) c. 150 mm (6 in.) | 25 kg (55 lb)
75 kg (165 lb)
125 kg (275 lb) | | ASTM C 227 | Alkali-Silica (Mortar Bar)
a. Fine aggregate
b. Project cement | 10 kg (25 lb)
10 kg (25 lb) | | ASTM C 289 | Alkali-Silica (Chemical) | 10 kg (25 lb) | | ASTM C 295 | Petrographic Examination a. Undeveloped quarry b. Operating quarry c. Exposed face d. Undeveloped aggregate site (1) Fine aggregate (2) 19.0 mm (3/4 in.) NMSA (3) 37.5 mm (1-1/2 in.) NMSA (4) 75 mm (3 in.) NMSA | 25 kg (55 lb)
25 kg (55 lb)
25 kg (55 lb)
10 kg (25 lb)
25 kg (55 lb)
75 kg (165 lb)
150 kg (330 lb) | | | (5) 150 mm (6 in.) NMSA | 500 kg (1100 lb) | | ASTM C 342 | Volume Change in Cement-Aggregate Combination | 10 kg (22 lb) | | ASTM C 535 | Los Angeles Abrasion Resistance of Large-Size Coarse Aggregate | 150 kg (330 lb) | | ASTM C 586 | Alkali-Carbonate Reactivity (Rock Cylinder Method)
Minimum 75 mm (3 in.) aggregate | 150 kg (330 lb) | | ASTM C 851 | Soft Particles in Coarse Aggregate (Scratch Hardness) a. 12.5 mm (2 in.) NMSA b. 19.0 mm (3/4 in.) NMSA c. 25.0 mm (1 in.) NMSA d. 37.5 mm (1-1/2 in.) NMSA e. 50 mm (2 in.) NMSA | 15 kg (35 lb)
25 kg (55 lb)
50 kg (110 lb)
75 kg (165 lb)
100 kg (220 lb) | | Test | Description Aggregates (Contd.) | Quantity Required | |--------------------------|--|--| | ASTM C 1260 | Alkali-Silica Reactivity (Mortar-Bar Method) Fine aggregate Coarse aggregate | 10 kg (22 lb)
50 kg (110 lb) | | ASTM C 1293 | Alkali-Silica Reactivity (Concrete Prism Method) Fine aggregate Coarse aggregate | 20 kg (44 lb)
100 kg (220 lb) | | ASTM D 4791
CRD-C 120 | Flat and Elongated Particles a. Coarse aggregate b. Fine aggregate | 75 kg (165 lb)
10 kg (22 lb) | | CRD-C 114 | Freezing and Thawing of Aggregate in Concrete a. Fine aggregate b. Coarse 19.0-mm (3/4 in.) NMSA c. Coarse 37.5-mm (1-1/2 in.) NMSA d. Coarse 75-mm (3 in.) NMSA e. Coarse 150-mm (6 in.) NMSA | See CRD-C 100
500 kg (1,100 lb)
1000 kg (2,200 lb)
1000 kg (2,200 lb)
1000 kg (2,200 lb)
1000 kg (2,200 lb) | | CRD-C 125
CRD-C 126 | Coefficient of Linear Thermal Expansion a. Fine aggregate b. Coarse aggregate, 75 mm (3 in.) NMSA c. Ledge rock or rock core | 10 kg (25 lb)
3 samples
3 samples | | | Fracture Faces (five sieve fractions) | 20 kg (30 lb) | | Test | Description | Quantity Required | |-------------|--|-------------------| | | Riprap. | | | ASTM C 88 | Sulfate Soundness, per rock type | 50 kg (100 lb) | | ASTM C 127 | Specific Gravity & Absorption | 70 kg (150 lb) | | ASTM C 295 | Petrographic Examination, per stratum | 10 kg (25 lb) | | ASTM D 5312 | Resistance to Freezing and Thawing, per rock type, cubical shape, three each | 3 stones | | ASTM D 5313 | Resistance to Freezing and Thawing, per rock type, cubical shape, three each | 3 stones | | CRD-C 144 | Resistance to Freezing and Thawing, per rock type, 70 kg (150 lb), cubical shape, three each | 3 stones | | CRD-C 148 | Expansive Breakdown on Soaking in Ethylene Glycol | 50 kg (110 lb) | | CRD-C 169 | Resistance to Wetting & Drying, per rock type 70 kg (150 lb), cubical shape, three each | 3 stones | | Test | Description | Quantity Required | |--|--|---| | | Rock | | | RTH 107 | Specific Gravity, Absorption, and Moisture Content, cylindrical specimens | 5 kg (11 lb) | | RTH 108 | Specific Gravity of Solids (Grain Density) | 5 kg (11 lb) | | | Porosity and Solids by High Pressure, drilled cores | 3 Pieces | | ASTM C 127, RTH
106-93, 107-93,
108-93, 109-93 | Water Content, Unit Weight, Absorption, and Specific Gravity - Core or block for obtaining fragments | Fragment dimensions
2-in. minimum,
3-in. maximum;
three fragments per test
sample | | | Adsorption Core or block for obtaining fragments | Five fragments at least
100 g each per test
sample | | ASTM C 295, RTH
102-93 |
Petrographic Examination Block, Core or Hand Sample, X-Ray, Thin Section | as available | | | Core or block fragments – undeveloped quarry developed quarry | 25 kg (55 lb)
25 kg (55 lb) | | ASTM D 2938, RTH
111-89 | Unconfined (Uniaxial Static) Compressive Strength Good Quality core (See Note R4) preferred, or blocks for coring | Core fragments with length at least 2.5X diameter; one per test | | ASTM D 4138, RTH
201-89 | Modulus of Elasticity (Static) in Uniaxial
Compression
Good quality core preferred (See Note R4), or
blocks for coring | Core fragments with
length at least 2.5X
diameter; one per test if
strength if strength is
required | | ASTM 4138, RTH
201-89 | Modulus of Elasticity (Static) in Uniaxial
Compression with Poisson's ratio
Good quality core preferred (See Note R4), or
blocks for coring | Core fragments with
length at least 2.5X
diameter; one per test if
strength is required | | ASTM D 5731, RTH
325-89 | Point Load Index
Core or block for making fragments | Min fragment dimension
30 mm (1.2-in.), max
dimension 85 mm (3.3-
in.); one per test | | ASTM D 2936, RTH
112-93 | Tensile Strength, Direct Method
Good quality core preferred (See Note R4), or
blocks for coring | Core fragments min.
length 2.5X diameter;
min 1 7/8-in. dia (47
mm), max 4-in. dia (100
mm); one per test | | Test | Description | Quantity Required | |---|--|--| | | Rock (Cont'd) | | | ASTM D 3967, RTH
113-93 | Tensile Strength, Splitting (Brazilian) Method
Core preferred, or blocks for coring | Core fragments min.
length 1.5X dia; min 1-
in. dia (25 mm), max 5-
in. dia (125 mm); one
per test | | CRD C 90, RTH
203-80, EM 1110-2-
1906 | Direct Shear of Rock Intact
Suite of 3 tests
Intact core or block fragments
This includes so-called shale layers or partings that
are not to be separated before shear | Min thickness (normal
to shear) 1/3X width;
Min 2-in. width (50 mm),
max 6-in. width (150
mm); 3 per suite | | RTH 203-80 | Direct Shear of Rock Jointed or Sawed Surfaces
Suite of 3 tests
Core or block fragments including separated joint
with faces mated OR shale parting to be split apart
before shearing OR sawed surface location
specified | Min thickness 1/3X width; Min 2-in. width (50 mm), max 6-in. width (150 mm); 3 per suite | | | Direct Shear of Rock Concrete on Rock
Suite of 3 tests
Core or block fragments
Concrete or grout mix design | Min thickness 1/4X width; Min 2-in. width, max 6-in. width; 3 per suite | | ASTM D 4435, RTH
323-80 | Rock Bolt Anchor Pull Test
Core preferred, or blocks for coring
Anchor bolt specification
Grout mix design | Min 4-in. (100 mm) dia,
max 6-in. (150 mm) dia;
Min 5-in. length (125
mm); 1 per test | | ASTM D 2664, RTH
202-89 | Triaxial Compressive Strength, Undrained w/o Pore Pressures
Good quality core (Note R4) preferred, or blocks for coring | length 2.5X dia; Max 3- | | ASTM D 4644 | Slake Durability Core or block for obtaining fragments | Ten fragments 40-60 g each per test sample | | Notes on Rock
Tests | Note R1: Add charges for drilling core samples for testing Note R2: Photographs standard, decrease \$10 per test if standard photographs are not desired Note R3: Add charges for preparation and compressive testing of cementitious grout mix Note R4: Good quality core requires sides to be straight to within 0.020-in. (0.50 mm) | | ## **PART C** # TESTS OF CEMENTITIOUS MATERIALS AND ADMIXTURES #### **Cost Estimates of Test and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | | |--------------------------|--|--------------------------------------|--| | | Cement, Pozzolan, Slag, and Earth Materials | | | | ASTM C 91 | Masonry Cement | | | | ASTM C 91 | Water Retention | | | | ASTM C 109 | Compressive Strength | | | | ASTM C 114 | Alkali Content | | | | ASTM C 150 | Portland cement (excluding heat of hydration alkalies, false set, sulfate (1) Chemistry (2) Physical | | | | ASTM C 185 | Air Content | | | | ASTM C 186 | Heat of hydration (1) 1 age (2) Each additional age | | | | ASTM C 188 | Density | | | | ASTM C 204
ASTM C 430 | Fineness (Portland Cement) (1) Air Permeability (2) 45-µm (No. 325) Sieve | | | | ASTM C 311 | Reactivity with Cement Alkalies | | | | ASTM C 451 | Early Stiffening (False Set) | | | | ASTM C 452 | Sulfate Expansion | | | | ASTM C 595 | Blended Hydraulic Cement (excluding heat of hydration and alkali expansion and Table 3) (1) Chemistry (2) Physical | | | | ASTM C 618 | Fly ash and natural pozzolan (excluding reactivity) (1) Chemistry (2) Physical | | | | ASTM C 845 | Expansive Hydraulic Cement | | | | ASTM C 989 | Ground Granulated Blast-Furnace Slag | | | | ER 1110-1-2002 | Specification Compliance, Complete chemical and physical analysis of special cements and pozzolan | | | | | Phase Composition and Microstructure | | | #### Cost Estimates (cont.) | Test | Description | Individual Test
Cost Estimates, \$ | |------------|--|---------------------------------------| | | <u>Admixtures</u> | | | ASTM C 260 | Air-Entraining Admixture a. Uniformity (check) test b. Abbreviated test c. Full evaluation d. Per drum release from pre-tested pool | | | ASTM C 494 | Water-Reducing Admixture a. Uniformity (check) test b. Abbreviated test c. Full evaluation d. Sampling and sealing per lot e. Transfer and resealing | | | ASTM C 796 | Cellular Concrete Foaming Agents | | | ASTM C 937 | Grout Fluidifier | | | Test | Description | Quantity Required | |-------------------------------------|---|--| | | Cementitious Material | | | ASTM C 91 | Masonry Cement | 4-kg (9-lb) | | ASTM C 114 | Alkali Content | l-kg (2-lb) | | ASTM C 186 | Heat of Hydration (Two Ages) | 3-kg (6-lb) | | ASTM C 188 | Specific Gravity | 1-kg (2-lb) | | ASTM C 207 | Lime, Hydrated | 4-kg (9-lb) | | ASTM C 451 | False Set | 2-kg (4-lb) | | CRD-C 200
(SS-C-
1960/3/4/5)* | Detailed Analysis of Cement and Pozzolan | 4-kg (9-lb) | | | Phase Composition | 3-kg (7-lb) | | | <u>Admixtures</u> | | | ASTM C 260 | Air-Entraining Admixture a. Check test b. Abbreviated test c. Full test d. Per drum from pool (one sample/five drums) | 1-L (1 qt)
2-L (2-qt)
2-L (2-qt)
1-L (1-qt) | | ASTM C 494 | Water-Reducing Admixture a. Check test b. Abbreviated c. Full test | 1-L (1-qt)
2-L (2-qt)
2-L (2-qt) | | ASTM C 796 | Cellular Concrete Foaming Agent | 2-L (2-qt) | | CRD-C 619 | Grout Fluidifier | □-kg (1-lb) dry | | | Retarding Admixtures | 2-L (2-qt) | | | Special Admixtures | 1-L (1-qt) liquid
□-kg (1-lb) dry | ^{*} Federal Specification # **PART D** # TESTS OF CONCRETE AND SPECIAL SERVICES #### **Cost Estimates of Test and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | |------------|--|--------------------------------------| | | <u>Concrete</u> | | | ASTM C 39 | Compressive Strength, 150- by 360-mm (6- by 12-in.) or smaller, loading capability to 4.5 x 10 ⁶ N (1.0 x 10 ⁶ lbf) (up to three tests) | | | ASTM C 42 | Drilled Cores and Sawed Beams a. Drilling or Sawing Specimens b. Compressive Strength (up to three tests) c. Flexural Strength (up to three tests) | | | ASTM C 78 | Flexural Strength, 150- by 300-mm (6- by 6-in.) or smaller (up to three tests) | | | ASTM C 157 | Length Change of Cement, Mortar, and Concrete | | | ASTM C 215 | Determination of Fundamental Frequencies, Modulus of Elasticity, and Poisson's Ratio(up to three tests) | | | ASTM C 341 | Length Change of Drilled or Sawed Specimens of Cement Paste, Mortar, and Concrete | | | ASTM C 418 | Abrasion Resistance, Sand Blasting Method | | | ASTM C 457 | Air Content of Hardened Concrete a. Microscopical (up to 37.5-mm (1-1/2-in.) NMSA concrete) b. To include Spacing Factor and Specific Surface (up to 37.5-mm (1-1/2-in.) NMSA concrete) | | | ASTM C 469 | Modulus of Elasticity (Static) a. Compressometer b. Strain Gages Modulus of Elasticity and Poisson's Ratio | | | ASTM C 496 | Splitting Tensile Strength, 150- by 30-mm (6- by 12-in.) or smaller cylindrical specimens (up to three tests) | | | ASTM C 512 | Uniaxial Creep Test | | | ASTM C 597 | Pulse Velocity | | | ASTM C 642 | Specific Gravity, Absorption, and Voids (Concrete) | | | ASTM C 666 | Resistance to Rapid Freezing and Thawing a. Casting: b. Testing: | | #### Cost Estimates (cont.) | Test | Description | Individual Test
Cost Estimate, \$ | |-------------|---|--------------------------------------| | ASTM C 801 | Triaxial Compressive Strength (three confining pressures) | | | ASTM C 856
| Petrographic Examination, per specimen | | | ASTM C 944 | Abrasion Resistance - Rotating Cutter Method | | | ASTM C 1084 | Cement Content of Hardened Concrete | | | CRD-C 36 | Thermal Diffusivity of Concrete (2 specimens, 1 age) | | | CRD-C 37 | Thermal Diffusivity of Mass Concrete (1 specimen, 1 age) a. Casting b. Testing | | | CRD-C 38 | Temperature Rise in Concrete (one specimen) a. Casting: b. Testing: | | | | Temperature Rise in Concrete, AHS, (Q Drum Test)(Transient) a. Casting b. Testing | | | CRD-C 39 | Coefficient of Thermal Expansion (concrete cast w/embedded Carlson Gages, 2 specimens, 1 age) | | | | Coefficient of Thermal Expansion (hardened concrete or stone W/electronic length comparator, 2 specimens) | | | CRD-C 55 | Concrete Mixer Uniformity Tests | | | CRD-C 61 | Resistance of Fresh Concrete to Washout | | | CRD-C 63 | Abrasion-Erosion Resistance of Concrete (Underwater Method) (mixture proportioning not included) | | | CRD-C 71 | Ultimate Tensile Strain Capacity of Concrete (One 3-beam series at one starting age) (mixture proportioning not included) a. Casting (includes strain meters) b. Testing (Beam 1: rapid-load at start date, Beam 2: slow-load at start date for ~90 days Beam 3: rapid-load at slow-load failure) | | #### CRD-C 99 Mixture Proportioning a. Determination of water content, sand content, and coarse aggregate proportions for either a specified water-cement ratio or a specified cement content. Includes tests on plastic concrete, molding tests specimens, and strength tests. Does not include handling and processing aggregates or determination of gradation and specific gravity of aggregates. #### Cost Estimates (cont.) | Test | Description | Individual Test
Cost Estimate, \$ | |----------------|---|--------------------------------------| | | b. Determination of water-cement ratio required for a given strength by means of a W/C-Strength curve (3 points), in addition to other proportions. Includes tests on plastic concrete, molding test specimens, and strength tests. Does not include handling and processing aggregates or determination of gradation and specific gravity of aggregates: 19.0 -37.5-mm (3/4- to 1-1/2-in) NMSA 75-mm (3-in) NMSA | | | CRD-C 124 | Specific Heat of Aggregates, concrete and other materials (Two specimens at one age) | | | | Specific Heat of Mass Concrete Four specimens tested at one age as follows: a. Two tests performed on mass concrete mortar fraction b. Two tests performed on coarse aggregate c. Specific heat for mass concrete computed from test results | | | CRD-C 161 | Mixture Proportioning for Roller-Compacted Concrete Pavements (Determination of water-cement ratio or optimum moisture content at a given cement necessary to meet a specified or required average compressive or flexural strength. Includes development of moisture-density relationships and molding and testing of strength specimens, but does not include handling and processing of aggregates or determination of aggregate and cementitious material properties) | | | CRD-C 163 | Water Permeability of Concrete (100-mm (4-in.) diameter specimen) | | | CRD-C 164 | Direct Tensile Strength of Concrete (75-, 100-, or 150-mm (3-, 4-, or 6-in.) diameter specimen)(up to three tests) | | | EM 1110-2-2006 | Mixture Proportioning for Roller-Compacted Mass Concrete Structures (Determination of water-cement ratio required for a given strength by means of a W/C-Strength curve (3 points) in addition to other proportions. Includes consistency tests using modified Vebe apparatus, molding test specimens, and strength tests. Does not include handling and processing of aggregates or determination of aggregate and cementitious material properties) | | | Test | Description | Quantity Required | |---|--|---| | | <u>Concrete</u> | | | ASTM C 94 | Abrasion Resistance by Rotating-Cutter | Material for 2.5 ft ³ of concrete | | ASTM C 157 | Length Change of Cement Paste, Mortar, each Concrete; cement, fine and coarse aggregate | 9-kg (20-lb) | | ASTM C 341 | Length Change of Drilled or Sawed Specimens of Cement, Mortar, and Concrete cores or prisms | As specified | | ASTM C 418 | Abrasion Resistance by Sandblasting | Material for 2.5-ft ³ of concrete | | ASTM C 512 | Uniaxial Creep Test | See TABLE below | | | Minimum Quantities of Materials, kg (lb) | | | NMSA | <u>Coarse Aggregate</u>
Fine 4.75 - 19.0-mm 19.0 - 37.5-mm 37.5 - 75-mm 75 - 1 | | | Concrete | Aggregate (No. 4 - 3/4-in.) (3/4 - 1-1/2-in.) (1-1/2 - 3-in.) (3 - | | | 19.0-mm (3/4-in
37.5-mm (1-1/2-
75-mm (3-in.)
150-mm (6-in.) | ín.) 70 (150) 70 (150) 70 (150) 70 (150) 70 (150) 70 (150) 70 (150) | 50 (100)
50 (100)
50 (100)
(290) 50 (100) | | ASTM C 642 | Specific Gravity, Absorption, and Voids, each, several specimens | 1-kg (2.2-lb) | | ASTM C 666 | Resistance to Freezing and Thawing | As specified | | CRD-C 36 | Thermal Diffusivity of Concrete, Adiabatic Heat Signature (Transient Test) | As specified | | CRD-C 37 | Thermal Diffusivity of Mass Concrete, Adiabatic Heat Signature (Transient Test) | As specified | | CRD-C 38 | Temperature Rise | See TABLE below | | | Minimum Quantities of Materials, kg (lb) | | | NIMC A | Coarse Aggregates | 150 mm Drain | | NMSA
<u>Concrete</u> | Fine 4.75 - 19.0-mm 19.0 - 37.5-mm 37.5 - 75-mm75 - 4.75 - 19.0-mm 19.0 - 37.5-mm 37.5 - 75-mm75 75-mm 37.5 - 75-mm 37.5 - 19.0-mm 19.0 - 37.5-mm 37.5 - 75-mm 37.5 - 19.0-mm 19.0 - 37.5-mm 37.5 - 75-mm 37.5 - 19.0-mm 19.0 - 37.5-mm 37.5- | | | 19.0-mm (3/4-in
37.5-mm (1-1/2-
75-mm (3-in.)
150-mm (6-in.) | in.) 900 (2000) 900 (2000) 1100 (2200) 900 (2000) 900 (2000) 1100 (2200) 1200 (2650) | 300 (660)
300 (660)
300 (660)
(2900) 300 (660) | | CRD-C 39 | Coefficient of Thermal Expansion (concrete) | As specified | | Test | Description | Quantity Required | |---|--|--| | | Concrete (Contd.) | | | CRD-C 63 | Abrasion-Erosion Resistance of Concrete (Underwater Method) | Material for 2.5-ft ³ of concrete | | CRD-C 71 | Ultimate Tensile Strain Capacity of Concrete | Material for 1-yd ³ of concrete | | CRD-C 99 | Mixture Proportioning | See TABLE below | | | Minimum Quantities of Aggregates, kg (lb) | | | NMSA
Concrete | <u>Coarse Aggregates</u> Fine 4.75 - 19-mm 19 - 37.5-mm 37.5 -75-mm 79 Aggregate (No. 4 - 3/4-in) (3/4 - 1-1/2-in) (1-1/2 - 3-in) (3/4 - 1-1/2-in) | | | 19.0-mm (3/4-
37.5-mm (1-1/
75-mm (3-in)
150-mm (6-in) | 2-in) 1000 (2200) 1000 (2200) 1000 (2200)
2000 (4400) 2000 (4400) 2000 (4400) 2000 (4400) | 600 (1300)
800 (1800)
800 (1800)
8000 (6600) 800 (1800) | | Combined 19.0
& 37.5-mm | 0-mm
2000 (4400) 2000 (4400) 2000 (4400) | 800 (1800) | | Combined 19.0
37.5, & 75-mm | | 1200 (2700) | | Combined 19.0
75, & 150-mm | | 000 (8800) 2000 (4400) | | Notes: 1. | If both-interior and exterior mixtures are desired for any size aggresize should be doubled. | gate, quantities for that | | 2. | If a pozzolan is to be used-in the concrete, the quantity should be cement. | 40 % by mass of the | | 3. | 8-L (2-gal) of a proposed air-entraining admixture or chemical adm |
nixture will be required. | | CRD-C 126 | Thermal Coefficient of Expansion (mortar) | As specified | ## **PART E** TESTS OF MISCELLANEOUS MATERIALS WATER, SOIL-CEMENT, BRICKS AND MASONRY UNITS, AND OTHER MATERIALS #### **Cost Estimates of Individual Tests and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | | | |--|--|--------------------------------------|--|--| | Water | | | | | | ASTM C 932
(CRD-C 407) | Test for Iron Bacteria (four samples) | | | | | ASTM D 993
(Preferred
Method) | Test for Sulfate-Reducing Bacteria in Industrial Water and Water-
Formed Deposits | | | | | CRD-C 401 | Water, for Curing a. Preliminary evaluation b. Complete evaluation | | | | | CRD-C 402
CRD-C 403
CRD-C 404
CRD-C 405 | Complete Chemical Analysis | | | | | CRD-C 406 | Water, for Mixing | | | | | <u>Soil-Cement</u> | | | | | | ASTM D 558
CRD-C 592 | Moisture-Density Relations of Soil-Cement Mixtures | | | | | ASTM D 559
CRD-C 593 | Wetting and Drying of Compacted Soil-Cement Mixtures | | | | | ASTM D 560
CRD-C 594 | Freezing and Thawing of Compacted Soil-Cement Mixtures | | | | | | Compressive Strength | | | | | | Tensile Strength | | | | | | Soil Mineralogy | | | | #### **Cost Estimates of Individual Tests and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | | | |--------------------------|---|--------------------------------------|--|--| | Common Bricks | | | | | | ASTM C 55
(CRD-C 605) | Concrete Building Brick | | | | | ASTM C 62 | Building Brick (Solid Masonry Clay or Shale) | | | | | ASTM C 73 | Calcium Silicate (Sand-Lime) Face Brick | | | | | ASTM C 216 | Facing Brick a. Compressive strength b. Absorption and saturation coefficient c. Dimensions, cracks, warpage d. Efflorescence (facing brick) e. Freeze and thaw f. Modulus of rupture, flexure g. Initial rate of absorption | | | | | | Paving Bricks and Blocks | | | | | ASTM C 7 | Paving Brick a. Examination b. Rattler test | | | | | ASTM C 902 | Pedestrian and Light Traffic Paving Brick a. Examination b. Compressive strength c. Absorption and saturation coefficient d. Warpage e. Efflorescence f. Freeze-thaw (50 cycles) g. Modulus of rupture, flexure h. Sulfate soundness (15 cycle)(freeze-thaw) l. Abrasion resistance | | | | | | Concrete Paving Blocks a. Examination b. Compressive strengths c. Absorption d. Freeze-thaw (50 cycles) e. Skid resistance | | | | #### Cost Estimates (cont.) Individual Test Cost Estimate, \$ | Test | Description | |--------------------------|---| | | | | | Refractory Bricks | | ASTM C 666
(CRD-C 20) | Resistance to Freezing and Thawing | | ASTM C 24 | Pyrometric Cone Equivalent | | ASTM C 113 | Reheat Change of Refractory Bricks | | ASTM C 133 | Cold Crushing Strength and Modulus of Rupture of Refractory Brick and Shapes | | ASTM C 134 | Size and Bulk Density of Refractory Bricks and Insulating Fire Brick | | ASTM C 154 | Warpage of Refractory Brick and Tile, or Deviation from a Plane Surface | | | Coefficient of Thermal Expansion | | | | | | <u>Tile</u> | | ASTM C 34 | Structural Clay Load-Bearing Wall Tile | | ASTM C 56 | Structural Clay Nonload-Bearing Tile | | ASTM C 57 | Structural Clay Floor Tile a. Compressive strength b. Absorption c. Dimensions, cracks, finish d. Freeze and thaw | | ASTM C 126 | Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units a. Compressive strength b. Dimension, cracks, finish c. Imperviousness d. Chemical resistance e. Opacity f. Autoclave crazing | #### Cost Estimates (cont.) | Test | Description | Individual Test
Cost Estimate, \$ | |------------|--|--------------------------------------| | | Concrete Masonry | | | ASTM C 90 | Hollow Load-Bearing Concrete Masonry Units | | | ASTM C 129 | Nonload-Bearing Concrete Masonry Units | | | ASTM C 145 | Solid Load-Bearing Concrete Masonry Units a. Compressive strength b. Dimension, cracks, etc. c. Water absorption | | | ASTM C 426 | Drying Shrinkage of Concrete Block (three whole units or six half-face shells) | | | ASTM C 427 | Moisture Condition of Hardened Concrete by the Relative Humidity Method | | | | Other Test Methods and Test Procedures | | | | <u>Masonry Mortars</u> | | | ASTM C 67 | Efflorescence of Masonry Mortars | | | ASTM C 80 | Water Retentivity of Masonry Mortars | | | ASTM C 144 | Aggregate for Masonry Mortar | | | ASTM C 270 | Unit Masonry Mortar Mixture Proportioning | | | ASTM C 476 | Masonry Grout | | ## **Cost Estimates of Individual Tests and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | |------------------------|---|--------------------------------------| | | <u>Metals</u> | | | ASTM A 82 | Cold-Drawn Steel Wire for Concrete Reinforcement (Tensile, Yield Point, Reduction in Area, Bend Test) | | | ASTM A 184 | Fabricated Steel Bar on Rod Mats for Concrete Reinforcement (Steel Certification, Connection Tests, Sizing) (two specimens) | | | ASTM A 185 | Welded Steel Wire Fabric for Concrete Reinforcement (Tension, Weld Shear, Bend, Sizing) | | | ASTM A 322 | Hot-Rolled Alloy Steel Bars | | | ASTM A 370
ASTM E 8 | Tension Testing of Metallic Materials (coupons, reinforcing bars, pipes) a. Yield, break, and ultimate stress b. Load-deformation curve c. Stress-strain curve d. All other tests | | | ASTM A 416 | Uncoated Seven-Wire Stress-Relieved Strand for Prestressed Concrete (Tension, Breaking Point, Yield Point, Elongation, Sizing) | | | ASTM A 421 | Uncoated, Stress-Relieved Wire for Prestressed Concrete (Yield Point, Tensile, Elongation, Cast, Button Anchorage) | | | ASTM A 615 | Deformed & Plain Billet-Steel Bars for Concrete Reinforcement (Tensile or Bend Tests) Specimen exceeding 20,000-lbf | | | ASTM A 616 | Rail-Steel Deformed and Plain Bars for Concrete Reinforcement (Tensile or Bend Tests) Specimen exceeding 20,000-lbf | | | ASTM A 617 | Axle Steel Deformed Bars for Concrete Reinforcement (Tensile or Bend Tests) | | | | Reinforcing Bar Weld (Tension or Bend Test) | | | Test | Description | Individual Test
Cost Estimate, S | |------------|--|-------------------------------------| | | Metals (Cont'd.) | | | | Splices in Reinforcing Steel, Thermit or Cadweld (Yield & Ultimate Point, Deformation) (Specimen exceeding 20,000-lbf) | | | | Noncorrosive Wire Reinforcing Fabric (Sizing, Tensile, Bending, Flexibility, Coating Quality & Thickness) | | | | Certification of Expansion Cement and Concrete Bar Threaded Restraining Rods (three specimens) | | | | All Other Types of Metals and Test Procedures | | | | <u>Floor Tile</u> | | | ASTM C 57 | Clay Tile - Structural Clay Floor Tile | | | SS-T-312* | Tile, Floor, Asphalt, Rubber, Vinyl, Vinyl Asbestos a. Asphalt b. Rubber c. Vinyl d. Vinyl-Asbestos | | | MMM-A-110* | Adhesive - Asphalt, Cutback Type | | | MMM-A-115* | Adhesive - Asphalt, Water-Emulsion Type | | | | All Other Tiles and Adhesives | | | | <u> Oils</u> | | | | Lubricating Oils - All Applicable Federal, Military, and ASTM Specifications | | | | Insulating (Transformer) Oils - All Applicable Federal, Military, and ASTM Specifications | | | | | | | Test | Description | Individual Test
Cost Estimate, \$ | |--|--|--------------------------------------| | | Roofing Materials | | | ASTM D 312
ASTM D 449
SS-A-666*
SS-A-701* | Asphalt a. For Constructing Built-Up Roof Coverings b. For Damp-Proofing and Water-Proofing c. Petroleum for Built-up Roofing, Water-Proofing, & Damp-Proofing d. Petroleum for Primer, Roofing, Water-Proofing | | | SS-R-501*
SS-R-630*
HH-R-595* | Roofing Felt a. Asphalt Prepared, Smooth Surface b. Asphalt Prepared, Mineral Surface c. Coal-Tar and Asphalt-Saturated Organics | | | SS-S-298* | Shingles a. Organic Fiber, Asphalt (Mineral Surfaced) (Thick Butt) b. Organic Fiber, Asphalt (Mineral Surfaced) (Uniform Thickness) | | | R-P-381* | Pitch & Coal Tar for Mineral Surfaced, Built-Up Roofing, Water-
Proofing, Damp-Proofing | | | | All Other Roofing Materials | | | | Other Materials | | | CRD-C 261 | Non-shrink Grout a. Prepackaged type requiring water only b. Volume-change controlling ingredient for addition to project material | | | CRD-C 300 | Curing Compound a. Full Test b. Per drum from pool | | | CBD-C 316 | Solvente | | | | a. Full Test
b. Per drum from pool | |--|---| | CRD-C 316
(TT-T-291E)* | Solvents | | CRD-C 532
(ASTM D 2835) | Lubricant for Installation of Preformed Compression Seals in Concrete Pavements | | CRD-C 590
(MMM-G-650a)**
CRD-C 591
(MMM-B-350B)** | | | Toot | Description | Individual Test | |------|-------------|-------------------
 | Test | Description | Cost Estimate, \$ | #### Other Materials (Cont'd) ASTM C 881 Epoxy Resin a. Type I, II, VI, and VII b. Type III c. Type IV or V Mineralogy and microstructure of soils, clays, site rock, masonry units | Test | Description | Quantity
Required | |--|---|----------------------| | | <u>Water</u> | | | ASTM C 932 | Test for Iron Bacteria | 1-L (1-qt) | | ASTM D 993 | Test for Sulfate-Reducing Bacteria | 1-L (1-qt) | | CRD-C 401 | Water for Curing, Stain Test | 3-L (3-qt) | | CRD-C 402
CRD-C 403
CRD-C 404
CRD-C 405 | Chemical Analysis | 1-L (1-qt) | | | Soil-Cement Design | | | ASTM D 558 | Moisture Density | 30-kg (66-lb) | | ASTM D 559 | Wetting and Drying | 30-kg (66-lb) | | ASTM D 560 | Freezing and Thawing | 30-kg (66-lb) | | | Compressive and Tensile Splitting Strengths | As specified | | Test | Description | Quantity
Required | |------------|--|----------------------| | | Common Brick | | | ASTM C 55 | Concrete Building Brick (per lot) | 3 | | ASTM C 62 | Building Brick (Solid Masonry, Clay, or Shale)(per 50,000 bricks) | 10 | | ASTM C 73 | Calcium Silicate Face Brick (per 50,000 bricks) | 10 | | ASTM C 216 | Facing Brick (per 50,000 bricks) | 10 | | | Paving Bricks and Blocks | | | ASTM C 7 | Paving Brick (per 50,000 bricks) | 10 | | ASTM C 902 | Pedestrian and Light Traffic Paving Brick (per 50,000 bricks) | 25 | | | Concrete Paving Block (per 50,000 blocks) | 12 | | | Refractory Bricks | | | ASTM C 24 | Pyrometric Cone Equivalent | 5 | | ASTM C 113 | Reheat Change of Refractory Bricks | 3 | | ASTM C 133 | Cold Crushing Strength and Modulus of Rupture of Refractory Bricks and Shapes (min.) | 5 | | ASTM C 134 | Size and Bulk Density of Refractory Bricks and Insulating Fire Brick | 10 | | ASTM C 154 | Warpage of Refractory Brick, or Deviation from a Plane Surface | 20 | | ASTM C 666 | Resistance to Freezing and Thawing | 5 | | | Coefficient of Thermal Expansion | 5 | | | For All Specification Tests | 25 | | Test | Description | Quantity
Required | |------------|--|----------------------| | | <u>Tile</u> | | | ASTM C 34 | Structural Clay Load-Bearing Wall Tile (each kiln or lot) | 5 | | ASTM C 56 | Structural Clay Nonload-Bearing Tile (each kiln or lot) | 5 | | ASTM C 57 | Structural Clay Floor Tile (each kiln or lot) | 5 | | ASTM C 126 | Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units (each additional 30,000 units) | 1,000
10 | | | Concrete Masonry | | | ASTM C 90 | Hollow Load-Bearing Units (10,000 units) (10,000 units and greater) | 10
20 | | ASTM C 129 | Nonload-Bearing Units (10,000 units) (10,000 units and greater) | 10
20 | | ASTM C 145 | Solid Load-Bearing Units (10,000 units) (10,000 units and greater) | 10
20 | | ASTM C 426 | Dry Shrinkage of Concrete Block (half-face shells) | 3 | | ASTM C 427 | Moisture Condition by the Relative Humidity Method | As specified | | | Masonry Mortars | | | ASTM C 67 | Efflorescence adapted for Mortars | As Specified | | ASTM C 80 | Water Retentivity | As Specified | | ASTM C 144 | Aggregate for Masonry Mortar | 15-kg (33-lb) | | ASTM C 270 | Unit Masonry Mortar Mixture Proportioning | As Specified | | ASTM C 476 | Reinforced Masonry Mortar Mixture Proportioning | As Specified | | Test | Description | Quantity
Required | |------------|---|---| | | <u>Metals</u> | | | ASTM A 82 | Cold-Drawn Steel Wire for Concrete Reinforcement (9071-kg (10-ton) lots) | 2 | | ASTM A 184 | Fabricated Steel Bar or Rod Mats for Concrete Reinforcement (each 1,000 mats) | 2 | | ASTM A 185 | Welded Steel Wire Fabric for Concrete Reinforcement | 0.1-m ² (1.1-ft ²) | | ASTM A 322 | Hot Rolled Alloy Steel Balls | As specified | | ASTM A 370 | Steel Products (Mechanical Tests) | As specified | | ASTM A 416 | Uncoated Seven-Wire Stress-Relieved Strand for Prestressed Concrete (18,142-kg (20-ton) lots) | 2 | | ASTM A 421 | Uncoated Stress-Relieved Wire for Prestressed Concrete (each 10 coils per lot) | 1 | | ASTM A 615 | Deformed and Plain Billet Steel Bars for Concrete Reinforcement (each heat) | 2 | | ASTM A 616 | Rail Steel Deformed and Plain Bars for Concrete Reinforcement (9,071-kg (10-ton) lots) | 2 | | ASTM A 617 | Axle Steel Deformed Bars for Concrete Reinforcement (9,071-kg (10-ton) lots) | 2 | | | Splices and Welds | As specified | | | Noncorrosive Wire Reinforcing Fabric | As specified | | | Certification of Threaded Restraining Rods (per lot) | 3 | | | All Other Types of Metals and Test Procedures | As specified | | Test | Description | Quantity
Required | | |--|---|----------------------|--| | | Floor Tile | | | | ASTM C 57 | Clay Tile (each kiln or each 90,718-kg (100-ton)) | 5 | | | SS-T-312* | Asphalt, Rubber, Vinyl, & Vinyl Asbestos Tile (per 10,000 of each type, color, or size) | 20 | | | MMA-A-110* | Adhesive, Asphalt, Cutback Type | 4-L (4-qt) | | | MMM-A-115* | Adhesive, Asphalt, Water Emulsion Type | 4-L (4-qt) | | | | All Other Tiles and Adhesives | As specified | | | <u>Oils</u> | | | | | | Lubricating Oil | As specified | | | | Insulating (Transformer) Oil | As specified | | | | Roofing Material | | | | ASTM C 312
(SS-A-701)*
ASTM D 449
(SS A 666)* | Asphalt | 1-L (1-qt) | | | SS-R-501*
SS-R-630*
HH-R-595* | Roofing Felts | As specified | | | SS-S-298*
SS-S-300* | Shingles | As specified | | | R-P-381* | Pitch and Coal Tar | 1-L (1-qt) | | ^{*} Federal Specification Standard | Test | Description | Quantity
Required | |--|--|--| | | Other Materials | | | ASTM C 881 | Epoxy-Resin Base Bonding Systems (each component) | 2-L (2-qt) | | ASTM D 2835 | Lubricant for Preformed Pavement Seals (each lot) | 1-L (1-qt) | | CRD-C 300 | Curing Compound | As specified | | CRD-C 316
(TT-T-291E)* | Solvent | 2-L (2-qt) | | CRD-C 590
MMM-G-650a*
CRD-C 591
MMM-B-350B* | Epoxy Resin Binder or Grout (each component) | 2-L (2-qt) | | CRD-C 621 | Non-shrink Grout (minimum of 1 package) | 0.03-m ³ (1-ft ³) | | | Mineralogy and Microstructure of Soils, Clays, Site Rocks, and Masonry Units | As specified | ^{*} Federal Specification Standard ## **PART F** TESTS OF WATERSTOPS AND GATE SEALS, JOINT SEAL AND FILLERS, JOINT SEALERS, CAULKING AND SEALING MATERIALS, ### **Cost Estimates of Tests and Analyses** | Test | Description | Individual Test
Cost Estimate, \$ | |-------------|---|--------------------------------------| | | Waterstops and Gate Seals | - | | CRD-C 513 | Rubber Waterstops and Gate Seals a. Full evaluation of single lot (initial 200 lineal ft) b. Tensile strength and elongation test (each additional 200 lineal feet of the same lot) c. Job-Made Splices | 1,750
195
295 | | CRD-C 572 | Polyvinyl Chloride Waterstops a. Full evaluation of single lot (initial 200 lineal ft) b. Tensile strength and elongation test (each additional 200 lineal feet of the same lot) c. Job-Made Splices | 1,560
195
295 | | | Full-Size Evaluation of Waterstops and Job Splices | Cost | | | Preformed Joint Seals and Fillers | | | ASTM D 994 | Preformed Expansion Joint Filler for Concrete Bituminous Type | 490 | | ASTM D 1751 | Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (non-extruding and resilient bituminous types) | 490 | | ASTM D 1752 | Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction | 490 | | ASTM D 2628 | Preformed Polychloroprene Elastomeric Joint Seals for Concrete Pavements | 1,560 | | ASTM D 2635 | Adhesive/Lubricant for Installation of Preformed Joint Seals | 490 | | Test | Description | Individual Test
Cost Estimate, \$ | | |-----------------------------------|--|--------------------------------------|--| | Joint Sealers | | | | | CRD-C 506*
(TT- S-00227E)* | Elastomeric Type, Multi-component (for caulking, sealing, and glazing in buildings and structures) | Cost | | | CRD-C 526*
(SS- S-200E)** | Sealing Compounds, Two-Component, Elastomeric Polymer Type, Jet Fuel Resistant, Cold Applied | 2,925 | | | CRD-C 529*
(SS-S-1614A)** | Sealing Compound, Jet Fuel Resistant, Hot Applied, One Compound (portland cement and tar concrete) | 2,340 | | | CRD-C 530*
(SS-S-1401C)** | Sealing Compound, Hot Applied, For Concrete and Asphalt Pavements | 2,340 | | | Caulking and Sealing Materials | | | | | CRD-C 506*
(TT-S-00227E)** | Elastomeric Type, Multi-component | Cost | | | CRD-C 507
(TT-C-00598C)** | Oil- and Resin-Base Type (For Building Construction) | 490 | | | CRD-C 541
(TT-S-230a)** | Elastomeric Type, Single Component | 780 | | | CRD-C 542
(TT-S-
001543A)** | Silicone Rubber Base | 780 | | | CRD-C 543
(TT-S-001657)** | Single Component, Butyl Rubber Base, Solvent-Release Type | 685 | | | TT-P-00791B** | Linseed Oil Type (for wood-sash glazing) | Cost | | | | Other Types | Cost | | ^{*} POC, Dr. Kent Newman, (601) 634-3858 ** Federal Specification Standard | Test | Description | Quantity
Required | | |
--|--|---|--|--| | | Waterstops and Gate Seals | | | | | CRD-C 513 | Rubber Waterstop and Gate Seals,
a. Full evaluation, initial 60-m (200-lineal ft)
b. Tensile strength and elongation, each additional 60-m (200-ft)
c. Job-made splices | 1.2-m (4-ft)
1.2-m (4-ft)
1 sample | | | | CRD-C 572 | Polyvinyl Chloride Waterstops a. Full evaluation, initial 60-m (200-lineal ft) b. Tensile strength and elongation, each additional 60-m (200-ft) c. Job-made splices | 1.2-m (4-ft)
1.2-m (4-ft)
1 sample | | | | Joint Fillers | | | | | | ASTM C 994 | Preformed Expansion Joint Filler for Concrete, Bituminous Type (per 93-m² (1,000-ft²)) | 387-cm ² (60-in ²) | | | | ASTM D 1751 | Preformed Expansion Joint Filler (Non-extruding and Resilient Bituminous Types)(per 93-m ² (1,000-ft ²)) | 0.2-m ² (2-ft ²) | | | | ASTM D 1752 | Preformed Sponge Rubber & Cork Expansion Joint Fillers (per 93-m ² (,1000-ft ²)) | 0.2-m ² (2-ft ²) | | | | ASTM D 2628 | Preformed Polychloroprene Elastomeric Joint Seals If less than 25-mm (1-in.) width | 2.8-m (9-lin ft)
3.7-m (12-lin ft) | | | | ASTM D 2835 | Adhesive - Lubricant for Installation of Preformed Joint Seals in Concrete Pavements | 1-L (1-qt) | | | | CRD-C 507
(TT-C-00598C)*
CRD-C 506
(TT-S-00227E)*
CRD-C 541
(TT-S-230a)*
CRD-C 542
(TT-S-001543A)*
CRD-C 543
(TT-S-001657)* | All Caulking and Sealing Compounds, for large bulk containers, composite sample from top, middle, & bottom | 1-L (1-qt) | | | | | For small lots of material, Federal Test Method Standard No. 141 | Method 1021 | | | | TT-P-0791B* | Putty, Linseed-Oil Type, for large bulk containers, composite sample from top, middle & bottom | 1-L (1-qt) | | | | | For small lots of material, Federal Test Method Standard No. 141 | Method 1021 | | | ^{*} Federal Specification | Test | Description | Quantity
Required | |-----------------------------|--|----------------------| | | Joint Sealers | | | CRD-C 506
(TT-S-00227E)* | Elastomeric Type, Multi-component (Buildings & Other Structures) (each component and lot) (include sufficient primer) | 8-L (8-qt) | | CRD-C 526
(SS-S-200E)* | Elastomeric Polymer Type, Two-Component, Jet Fuel Resistant, Cold Applied (each component and lot) (include sufficient primer) | 8-L (8-qt) | | CRD-C 530
(SS-S-1401C)* | Hot Applied, for Concrete and Asphalt Pavements (each lot) | 8-L (8-qt) | | SS-S-1614A* | Sealing Compound, Jet Fuel Resistant, Hot Applied, One Component, for Portland Cement and Tar Concrete Pavements (each lot) | 8-L (8-qt) | # Part G # TESTS OF ASPHALT, ASPHALT MATERIALS, AND GEOTEXTILES #### **Costs of Individual Tests and Analyses** | Test | Description | Cost, \$ | |------------------|--|---------------------| | | Asphalt Binder Testing | | | ASTM D 3381 | Asphalt Cement (AC) | 1000 | | ASTM D 2171 | Viscosity 140F (60C) | 200 | | ASTM D 2170 | Viscosity 275F (60C) | 200 | | ASTM D 5 | Penetration 77F (25C) | 100 | | ASTM D 92 | Flash Point , Cleveland Open Cup | 200 | | ASTM D 113 | Ductility 77F (25 C) | 150 | | ASTM D 70 | Specific Gravity of AC | | | ASTM D 2042 | Solubility in Trichloroethylene | | | ASTM D 36/D 2398 | Softening Point | | | ASTM D 1754 | Thin Film Oven | | | ASTM D 2872 | Rolling Thin Film Oven Test | | | AASHTO PP6-93 | SHRP* Performance Grading (PG): per sample more than 5 samples | 1000
800 | | AASHTO PP6-93 | Verification of SHRP* PG: per sample more than 5 samples | 800
600 | | AASHTO PP5-93 | Evaluation of Modified Asphalt forensic analysis of asphalt binders individual SHRP* tests | 200
Cost
Cost | | | Aggregate Tests | | | ASTM C 136 | Sieve analysis washed per sample | 200 | | ASTM C 127/C 128 | Specific Gravity: apparent or bulk per sample | 200 | | ASTM D 4791 | Flat/elongated particles per sample | 100 | | ASTM C 131 | Los Angeles (LA) Abrasion per sample | 300 | ^{*} Strategic Highway Research Program ### Costs (cont.) | Test | Description | Cost, \$ | |---|---|--------------| | | Mix Designs | | | Mil-Std 620A
TM 5-822-8
CEGS-02551,
02556, 02557 | Hot Mix Design | 4000 | | Mil-Std 620A
TM 5-822-8
CEGS-02552 | Cold Mix Design | 5000 | | ETL 1110-1-177 | Resin Modified Pavement Open-Graded Resin Modified Pavement Grout | 4000
3000 | | | Compaction Methods | | | Mil-Std 620A
TM 5-822-8 | Marshall 75 Blow(200 PSI)
4"Dia.(10 lb/18"drop) | Cost | | 1.W 0 022 0 | Marshall 50 Blow(100 PSI)
4"Dia.(10 lb/18"drop) | Cost | | | Mechanical with Slanted Foot
4"Dia.(10 lb/18"drop) | Cost | | | Mechanical
6"Dia.(22 lb/18"drop) | Cost | | ASTM D 3387 | Corp Gyratory
4",6", and 8" diameter samples | Cost | | AASHTO PP 28-95 | Superpave Gyratory
4" and 6" diameter samples | Cost | | | Asphalt Mixture Tests | | | | Recompaction Study | Cost | | | Field Sample Evaluation | Cost | | ASTM D 2172 | Extraction of AC | 200 | | ASTM D 1856 | Recovery of AC (Abson Method) | 200 | | ASTM D 2041 | Maximum theoretical specific gravity (Rice) | 200 | | ASTM D 1559 | Marshall Stability | 175 | | ASTM D 4123 | Indirect Tensile | 175 | ### Costs (cont.) | Test | Description | Cost, \$ | |---|-------------------------------------|----------| | | Geotextile Tests | | | ASTM D 4595 | Tensile Test (per test) | 100 | | ASTM D 461/D
3786 | Breaking Strength (per test) | 300 | | D 3656/D 3787/D
3940 | Bursting Puncture (Per Test) | 300 | | ASTM D 4685 | Abrasion | 550 | | | Joint Sealant Tests | | | Federal
Specification 200 D
and E | Hand and Machine Mix 2 comp. | 3,500 | | Federal
Specification 1614 | Hot Pour | 3,300 | | Federal
Specification 1401 | Hot Pour | 3,300 | | Federal
Specification 227 | Silicones | 4,200 | | | Forensic Analysis of Joint Sealants | Cost | | Test | Description | Quantity Required | |-------------------------------|-------------------------------------|--------------------| | | Asphalt | | | ASTM D 3381 | Asphalt Binder Testing (per sample) | 1 gal. | | AASHTO PP6-93 | SHRP Performance Grading | 1 gal. | | AASHTO PP5-93 | Evaluation of Modified Asphalts | 1 gal. | | | | | | | Aggregate Stockpile Testing | 45.5 kg (100 lb) | | MIL-STD 620A/TM 5-
822-8 | Mix Design Asphalt | 5 gal. | | ETL 1110-1-177 | Resin Modified Pavement PL-7 | 5 gal. | | | Asphalt Mixture Tests | CALL | | | Geotextile Tests | CALL | | Federal Specification 200 D&E | Joint Sealant Testing (2 Component) | 5 gal. (Ea. Comp.) | | Federal Specification
1614 | Joint Sealant Testing (Hot Pour) | 5 gal. | | Federal Specification
1401 | Joint Sealant Testing (Hot Pour) | 5 gal. |